Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Total Environ ; 930: 172861, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38685417

RESUMEN

The mechanism of carboxymethylammonium chloride (CC) regulating cadmium (Cd) accumulation in rice was studied in field and hydroponic experiments. Field experiments showed that 0.2-1.2 mmol L-1 CC spraying effectively reduced Cd accumulation by 44 %-77 % in early rice grains and 39 %-78 % in late rice grains, significantly increased calcium (Ca) content and amino acids content in grains, as well as alleviated Cd-induced oxidative damage in leaves. Hydroponic experiments further verified the inhibition effect of CC on Cd accumulation. 1.2 mmol L-1 CC made the highest decrease of Cd content in shoots and roots of hydroponic seedlings by 45 % and 53 %, respectively. Exogenous CC significantly increased glutamate (Glu), glycine (Gly) and glutathione (GSH) content, and improved the activities of catalase (CAT) and superoxide dismutase (SOD) by 41-131 % and 11-121 % in shoots of hydroponic seedlings, respectively. Exogenous CC also increased the relative expression of OsGLR3.1-3.5 in the shoots and roots of hydroponic seedlings. The quantum computational chemistry was used to clarify that the Gly radical provided by CC could form various complexes with Cd through carboxyl oxygen atoms. These results showed that exogenous application of CC improved the tolerance to Cd by enhancing the antioxidant capacity; inhibited the absorption, transport and accumulation of Cd in rice by (1) promoting chelation, (2) increasing the GLRs activity through upregulating the content of Glu, Gly, as well as the expression of OsGLR3.1-3.5.


Asunto(s)
Cadmio , Oryza , Oryza/metabolismo , Oryza/genética , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
3.
Chemosphere ; 355: 141828, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552800

RESUMEN

Microorganisms play an important role in heavy metal bioremediation and soil fertility. The effects of soil inoculation with Pseudomonas sp. W112 on Cd accumulation in wheat were investigated by analyzing the transport, subcellular distribution and speciation of Cd in the soil and plants. Pseudomonas sp. W112 application significantly decreased Cd content in the roots, internode and grains by 10.2%, 29.5% and 33.0%, respectively, and decreased Cd transfer from the basal nodes to internodes by 63.5%. Treatment with strain W112 decreased the inorganic and water-soluble Cd content in the roots and increased the proportion of residual Cd in both the roots and basal nodes. At the subcellular level, the Cd content in the root cell wall and basal node cytosol increased by 19.6% and 61.8%, respectively, indicating that strain W112 improved the ability of the root cell wall and basal node cytosol to fix Cd. In the rhizosphere soil, strain W112 effectively colonized and significantly decreased the exchangeable Cd, carbonate-bound Cd and iron-manganese oxide-bound Cd content by 43.5%, 27.3% and 17.6%, respectively, while it increased the proportion of residual Cd by up to 65.2%. Moreover, a 3.1% and 23.5% increase in the pH and inorganic nitrogen content in the rhizosphere soil, respectively, was recorded. Similarly, soil bacterial community sequencing revealed that inoculating with strain W112 increased the abundance of Pseudomonas, Thauera and Azoarcus, which are associated with inorganic nitrogen metabolism, and decreased that of Acidobacteria, which is indicative of soil alkalinization. Hence, root application of Pseudomonas sp. W112 improved soil nitrogen availability and inhibited Cd accumulation in the wheat grains in a two-stage process: by reducing the Cd availability in the rhizosphere soil and by improving Cd interception and fixation in the wheat roots and basal nodes. Pseudomonas sp. W112 may be a suitable bioremediation agent for restoring Cd-contaminated wheat fields.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Triticum/metabolismo , Suelo/química , Disponibilidad Biológica , Pseudomonas/metabolismo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo , Nitrógeno/análisis
4.
Huan Jing Ke Xue ; 45(2): 1150-1160, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471952

RESUMEN

In order to evaluate the feasibility of using Burkholderia sp. Y4 as a cadmium (Cd)-reducing bacterial agent in contaminated wheat fields, the changes in the rhizosphere soil microbial community and Cd available state, as well as the content and transport characteristics of Cd in the wheat root, basal node, internode, and grain under the treatment of strain Y4 were tested using microbial high-throughput sequencing, step-by-step extraction, subcellular distribution, and occurrence analyses. The results showed that root application of strain Y4 significantly reduced the root and grain Cd content of wheat by 7.7% and 30.3%, respectively, compared with that in the control treatment. The Cd content and Cd transfer factor results in wheat vegetative organs showed that strain Y4 reduced the Cd transfer factor from basal node to internode by 79.3%, and Cd content in the wheat internode stem also decreased by 50.9%. The study of Cd occurrence morphology showed that strain Y4 treatment increased the proportion of residual Cd in roots and basal ganglia, decreased the contents of inorganic and water-soluble Cd in roots, and increased the content of residual Cd in basal ganglia. Further examination of the subcellular distribution of Cd showed that the Cd content in root cell walls and basal ganglia cell fluid increased by 21.3% and 98.2%, respectively, indicating that the Cd fixation ability of root cell walls and basal ganglia cell fluid was improved by the strain Y4 treatment. In the rhizosphere soil, it was found that the microbial community structure was changed by strain Y4 application. Under the Y4 treatment, the relative abundance of Burkholderia increased from 9.6% to 11.5%, whereas that of Acidobacteriota decreased. Additionally, the relative abundance of Gemmatimonadales, Pseudomonadales, and Chitinophagales were also increased by strain Y4 treatment. At the same time, the application of strain Y4 increased the pH value of rhizosphere soil by 8.3%. The contents of exchangeable Cd, carbonate-bound Cd, and iron-manganese oxide-bound Cd in the soil decreased by 44.4%, 21.7%, and 15.9%, respectively, whereas the proportion of residual Cd reached 53.6%. Root application of strain Y4 increased the contents of nitrate nitrogen and ammonium nitrogen in the soil by 22.0% and 21.4%, respectively, and the contents of alkaline nitrogen also increased to a certain extent. In conclusion, the root application of strain Y4 not only improved soil nitrogen availability but also inhibited Cd transport and accumulation from contaminated soil to wheat grains in a "two-stage" manner by reducing Cd availability in rhizosphere soil and improving Cd interception and fixation capacity of wheat roots and basal nodes. Therefore, Burkholderia Y4 has application potential as a Cd-reducing and growth-promoting agent in wheat.


Asunto(s)
Burkholderia , Compuestos Férricos , Contaminantes del Suelo , Cadmio/análisis , Triticum , Burkholderia/fisiología , Factor de Transferencia , Suelo/química , Nitrógeno/análisis , Contaminantes del Suelo/análisis
5.
Environ Pollut ; 341: 122934, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967709

RESUMEN

Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Cadmio/análisis , Cromo/metabolismo , Níquel/toxicidad , Níquel/metabolismo , Oryza/genética , Oryza/metabolismo , Regulación hacia Arriba , Regulación hacia Abajo , Plomo/metabolismo , Glutamatos/genética , Glutamatos/metabolismo , Celulosa/metabolismo , Contaminantes del Suelo/análisis , Suelo , Metales Pesados/análisis
6.
Sci Total Environ ; 912: 168613, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37984659

RESUMEN

The distributions of heavy metals in paddy fields and rice along river valleys were studied to explore the key factors affecting the accumulation of heavy metals in the upstream terraces and downstream plains. Results from 975 sampling sites showed that elevation, growing season and soil organic matter (OM) had significant effects on the content of Cd and Pb in topsoil and rice. The content of Cd (0.47-0.66 mg kg-1) and Pb (49.9-68.6 mg kg-1) in paddy fields with low elevation (30-60 m) in the downstream plains was significantly higher than the content of Cd (0.29-0.38 mg kg-1) and Pb (43.9-56.3 mg kg-1) in the upstream terraces with high altitude (60-90 m). In the double-rice production area, late rice generally produced grains with higher Cd and Pb content than early rice. Soil Cd was positively increased with the content of OM, especially in the downstream plains. When elevation was used for principal component analysis, plains with low elevation were grouped together with high content of total and soluble Cd, OM and Pb in soil, as well as high content of Cd and Pb in late rice. Altitude is one of the key factors affecting Cd content in rice. Although content of Cr (93.7-138.0 mg kg-1) was significantly higher than that of Cd and Pb in soil, content of Cr was lower than that of Cd in rice. These results indicate that paddy fields with elevation of 30-60 m in the downstream plains had high risk to produce late rice with Cd and Pb content exceeding the food safety standard 0.2 mg kg-1, which may be resulted from the driving force of runoff on soil soluble Cd and Pb from terraces to alluvial plains in river valleys.

7.
Microb Pathog ; 182: 106244, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423495

RESUMEN

PURPOSE: Ulcerative colitis is an inflammation-related disease with a high recurrence risk. Oxysophocarpine (OSC) is a traditional Chinese medicine isolated from legumes and exerts vital functions on many human diseases. However, the OSC's role in ulcerative colitis has not been fully elucidated. This research aimed to investigate the OSC's impact on ulcerative colitis and its mechanisms. METHODS: A mouse model of ulcerative colitis was induced by dextran sulphate sodium (DSS). The effect of OSC on ulcerative colitis was examined using Disease Activity Index detection, hematoxylin-eosin (HE) staining, and enzyme-linked immunosorbent assay (ELISA). Meanwhile, the mechanism of OSC in ulcerative colitis was assessed by immunohistochemistry assay, Western blot, HE staining, and ELISA. RESULTS: For the OSC's function in ulcerative colitis, OSC increased the mice weight, decreased Disease Activity Index scores, and alleviated colitis cell infiltration and epithelial cell destruction in DSS-induced ulcerative colitis. Also, OSC mitigated oxidative stress (decreased PGE2, MPO levels, and increased SOD levels) and inflammation (decreased IL-6, TNF-α and IL-1ß levels) in DSS-induced ulcerative colitis. For the OSC's mechanism in ulcerative colitis, OSC inhibited the level of tumor necrosis factor receptor-associated Factor 6 (TRAF6) and the phosphorylation of nuclear factor-κB (NF-κB). TRAF6 overexpression abolished the effect of OSC on DSS-induced colon injury and its associated oxidative stress and inflammatory properties in ulcerative colitis. CONCLUSION: OSC decreased the TRAF6 level to reduce oxidative stress and inflammatory factors secretion in mice with DSS induced-ulcerative colitis.


Asunto(s)
Alcaloides , Colitis Ulcerosa , Factor 6 Asociado a Receptor de TNF , Animales , Humanos , Ratones , Alcaloides/farmacología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colon/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación/patología , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Estrés Oxidativo
8.
Top Curr Chem (Cham) ; 381(4): 13, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37103594

RESUMEN

Solid-state nanopores/nanochannels, with their high stability, tunable geometry, and controllable surface chemistry, have recently become an important tool for constructing biosensors. Compared with traditional biosensors, biosensors constructed with solid-state nanopores/nanochannels exhibit significant advantages of high sensitivity, high specificity, and high spatiotemporal resolution in the detection single entities (such as single molecules, single particles, and single cells) due to their unique nanoconfined space-induced target enrichment effect. Generally, the solid-state nanopore/nanochannel modification method is the inner wall modification, and the detection principles are the resistive pulse method and the steady-state ion current method. During the detection process, solid-state nanopore/nanochannel is easily blocked by single entities, and interfering substances easily enter the solid-state nanopore/nanochannel to generate interference signals, resulting in inaccurate measurement results. In addition, the problem of low flux in the detection process of solid-state nanopore/nanochannel, these defects limit the application of solid-state nanopore/nanochannel. In this review, we introduce the preparation and functionalization of solid-state nanopore/nanochannel, the research progress in the field of single entities sensing, and the novel sensing strategies on solving the above problems in solid-state nanopore/nanochannel single-entity sensing. At the same time, the challenges and prospects of solid-state nanopore/nanochannel for single-entity electrochemical sensing are also discussed.


Asunto(s)
Técnicas Biosensibles , Nanoporos , Técnicas Biosensibles/métodos , Nanotecnología
9.
J Hazard Mater ; 452: 131342, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023578

RESUMEN

The selective permeation of glutamate receptor channels (GLRs) for essential and toxic elements in plant cells is poorly understood. The present study found that the ratios between cadmium (Cd) and 7 essential elements (i.e., K, Mg, Ca, Mn, Fe, Zn and Cu) in grains and vegetative organs increased significantly with the increase of soil Cd levels. Accumulation of Cd resulted in the significant increase of Ca, Mn, Fe and Zn content and the expression levels of Ca channel genes (OsCNGC1,2 and OsOSCA1.1,2.4), while remarkable reduction of glutamate content and expression levels of GLR3.1-3.4 in rice. When planted in the same Cd-polluted soil, mutant fc8 displayed significantly higher content of Ca, Fe, Zn and expression levels of GLR3.1-3.4 than its wild type NPB. On the contrary, the ratios between Cd and essential elements in fc8 were significantly lower than that in NPB. These results indicate that Cd pollution may damage the structural integrity of GLRs by inhibiting glutamate synthesis and expression levels of GLR3.1-3.4, which leads to the increase of ion influx but the decrease of preferential selectivity for Ca2+/ Mn2+/ Fe2+/ Zn2+ over Cd2+ through GLRs in rice cells.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/metabolismo , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Ácido Glutámico , Zinc/toxicidad , Zinc/metabolismo
10.
Nanomaterials (Basel) ; 13(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37110973

RESUMEN

Perovskites with nano-flexible texture structures and excellent catalytic properties have attracted considerable attention for persulfate activation in addressing the organic pollutants in water. In this study, highly crystalline nano-sized LaFeO3 was synthesized by a non-aqueous benzyl alcohol (BA) route. Under optimal conditions, an 83.9% tetracycline (TC) degradation and 54.3% mineralization were achieved at 120 min by using a coupled persulfate/photocatalytic process. Especially compared to LaFeO3-CA (synthesized by a citric acid complexation route), the pseudo-first-order reaction rate constant increased by 1.8 times. We attribute this good degradation performance to the highly specific surface area and small crystallite size of the obtained materials. In this study, we also investigated the effects of some key reaction parameters. Then, the catalyst stability and toxicity tests were also discussed. The surface sulfate radicals were identified as the major reactive species during the oxidation process. This study provided a new insight into nano-constructing a novel perovskite catalyst for the removal of tetracycline in water.

11.
Bioresour Technol ; 380: 129076, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37088432

RESUMEN

This study proposes a novel method to enhance methane production from anaerobic digestion using an amino acid-derived ionic liquid, glycine hydrochloride, ([Gly][Cl]), as an exogenous additive. After 40 days of digestion with 5% [Gly][Cl], the cumulative methane production was 115.56 mL/g VS, which was 73% higher than that of the control group (without additive). Specifically, the peak activities of cellulase, xylanase, and lignin peroxidase were significantly higher than those of the control group. The addition of [Gly][Cl] increased bacterial diversity and reduced archaeal diversity. Synergistota represented by Syner-01, Fibrobacterota represented by BBMC-4, Bacteroides, and unclassified_f__Lachnospiraceae significantly increased in relative abundance. It suggested that [Gly][Cl] stimulated the activities of protein-hydrolyzing and acid-producing bacteria. [Gly][Cl] also increased the abundance of methanogens and archaea, converting more lignocellulose to methane. Methanobacterium, that metabolizes H2 and CO2 to CH4, was more abundant. Therefore, [Gly][Cl] can improve methane yield as an anaerobic digestion additive.


Asunto(s)
Líquidos Iónicos , Oryza , Anaerobiosis , Oryza/metabolismo , Líquidos Iónicos/farmacología , Aminoácidos/metabolismo , Bacterias/metabolismo , Archaea/metabolismo , Clostridiales/metabolismo , Metano , Reactores Biológicos/microbiología
12.
Toxics ; 11(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36977053

RESUMEN

To reduce contamination levels in Cd-contaminated paddy soil while retaining soil characteristics, we have studied the Cd-removing ability of 15 different amino acid-based ionic liquids, which are considered to be green solvents, as soil washing agents and their impact on soil. The results indicated that the glycine hydrochloride ([Gly][Cl]) removed the most Cd, and under optimized conditions could remove 82.2% of the total Cd. Encouragingly, the morphology of the soil had not been significantly changed by the washing process. After the soil was rinsed twice with water and the pH was adjusted to 6.2 by adding Ca(OH)2, the germination index of the rice increased by 7.5%. The growth of the rice was also stimulated, with lengths and weights of the rice plants increasing by 56% and 32%, respectively, after two weeks. These experiments demonstrate that amino-acid-derived ionic liquids can be promising soil-washing agents of Cd-contaminated paddy soil.

13.
Chemosphere ; 327: 138511, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36972869

RESUMEN

The mechanism of reactive oxygen species (ROS) burst in rice cells induced by cadmium (Cd) stress remains poorly understood. The present study shows that the burst of superoxide anions (O2·-) and hydrogen peroxide (H2O2) in roots and shoots led by Cd stress was attributed to the disturbance of citrate (CA) valve and the damage of antioxidant enzyme structure in the rice seedlings. Cd accumulation in cells altered the molecular structure of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) through attacking glutamate (Glu) and other residues, leading to the significant reduction of their activities in clearing O2·- and decomposing H2O2. Citrate supplementation obviously increased the activity of antioxidant enzymes and decreased ∼20-30% of O2·- and H2O2 contents in roots and shoots. Meanwhile, the synthesis of metabolites/ligands such as CA, α-ketoglutarate (α-KG) and Glu as well as the activities of related enzymes in CA valve were remarkably improved. The activities of antioxidant enzymes were protected by CA through forming stable hydrogen-bonds between CA and antioxidant enzymes, and forming the stable chelates between ligands and Cd. These findings indicate that exogenous CA mitigated the toxicity of ROS under Cd stress by the ways of restoring CA valve function to reduce the production of ROS, and improving the stability of enzyme structure to enhance antioxidant enzymes activity.


Asunto(s)
Antioxidantes , Oryza , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Cadmio/toxicidad , Ácido Cítrico/farmacología , Peróxido de Hidrógeno , Ligandos , Catalasa , Superóxido Dismutasa , Plantones , Raíces de Plantas
14.
Toxics ; 11(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36668797

RESUMEN

To explore the effect of exogenous application of chlorinated amino acetic acid on cadmium (Cd) transport characteristics in rice seedlings, X24 and Z35 rice were taken as the research objects to carry out hydroponics experiments, and the changes of Cd content in rice seedlings, rice mineral elements and amino acid content in rice were analyzed. The results showed that exogenous application of 1.2 mmol·L-1 chlorinated amino acetic acid inhibited cadmium in shoots and roots of rice seedlings; Cd content in shoots and roots were reduced by up to 62.19% and 45.61%, respectively. The majority of cadmium was in the cell wall of shoots and roots; this decreased with the increase of the concentration of chlorinated acetic acid. In addition, the Mn content in shoots and Ca content in roots of rice seedlings increased significantly after the application of chlorinated amino acetic acid. The results of amino acid analysis showed that the contents of aspartic acid, glutamic acid and cystine in rice seedlings were increased. These results indicate that exogenous application of chlorinated amino acetic acid is beneficial to the synthesis of aspartic acid, glutamic acid and cysteine in rice seedlings, increases the content of Mn in shoots and Ca in roots of rice seedlings, and significantly alleviates cadmium stress in seedlings. This provides a theoretical basis for the development of an environmentally friendly Cd-lowering foliar fertilizer for rice.

15.
Heliyon ; 8(11): e11225, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36339758

RESUMEN

Polypropylene has been used for applications requiring high mechanical properties, good adhesion, chemical stability and insulation. Whereas, Polypropylene itself is flammable, and its limiting oxygen index (LOI) is low, which cannot pass the UL-94 combustion test. Therefore, extensive use will cause a serious threat to human life and property. With the wide application of thermoplastic polypropylene in industry, the development of environmentally friendly flame retardant materials has become an important research direction. For the past dozen years, researchers have been exploring flame retardants with high flame retardant efficiency, low toxicity, less smoke or other excellent performance flame retardants. This paper reviews the research progress of some phosphorus-containing flame retardants on the flame retardant properties of polypropylene in recent years. Phosphorus flame retardant is a flame retardant with high flame retardant efficiency, good stability and wide application. The types and flame retardant properties of phosphorus flame retardant will be introduced, and the future research of phosphorus flame retardant is summarized, direction and development opportunities.

16.
Small ; 18(29): e2202867, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35754302

RESUMEN

Photothermal materials can convert renewable solar energy into thermal energy and have great potential for solar water evaporation. Copper sulfide (Cu2- x S) is an easily available and inexpensive plasmonic material with a high photothermal conversion efficiency and can be applied to solar evaporation and water purification. Monodispersed Cu7 S4 nanoparticles (NPs) and supercrystalline self-assembled superparticles are obtained via wet chemical synthesis and micelle self-assembly. The photothermal properties of the superstructures are investigated using the finite difference time domain method and laser radiation photothermography. The results show that the electromagnetic field intensity and photothermal efficiency of the self-assembly are significantly higher than those of isolated NPs, which is due to the plasmonic coupling of the NPs. The evaporation efficiency of the superstructure is significantly higher than that of isolated NPs, the metal salt ion and total organic carbon concentrations in the waterbody significantly decrease after evaporation, and the water polluted by high salt and organic dye concentrations is purified. The water quality significantly improves after the lake water from Fuxian Lake in the Yunnan-Guizhou Plateau of China is used for solar evaporation. The color changes from pale yellow to colorless and the ion and total organic carbon contents significantly decrease.


Asunto(s)
Energía Solar , Purificación del Agua , Carbono , China , Luz Solar , Purificación del Agua/métodos
17.
Huan Jing Ke Xue ; 43(4): 2142-2150, 2022 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-35393838

RESUMEN

In order to investigate the effects of Burkholderia sp. Y4 on rice seedlings under cadmium (Cd) stress, seed germination and vermiculite culture experiments were conducted using low Cd-accumulation xiangzaoxian 24 (X24) and high Cd-accumulation Tyou 705 (T705) varieties. The effects of Burkholderia sp. Y4 on rice growth, oxidative damage caused by Cd, and Cd accumulation were studied. Additionally, the Cd2+ flux rates in the elongation zone of rice roots under Burkholderia sp. Y4 application were detected using non-invasive micro-test technology. Burkholderia sp. Y4 alleviated the inhibition effect of Cd on rice seed germination by 13.8%. After inoculation with Burkholderia sp. Y4 for 7 d, the length of rice roots and buds increased by 83.3% and 12.2%, and their dry weight increased by 56.8% and 12.5%, respectively; those in the 10 d Y4 inoculation group increased by 28.6% and 20.0% in length and by 113.2% and 46.0% in dry weight, respectively. Burkholderia sp. Y4 inoculation also alleviated rice oxidative stress damage caused by Cd. The application of strain Y4 significantly reduced the content of the oxidative damage product malondialdehyde (MDA) in the shoots and roots of rice seedlings by 21.5% and 16.9%, respectively. Under Burkholderia sp. Y4 inoculation, the significant changes in antioxidant enzyme SOD and CAT activities caused by Cd stress disappeared in rice roots; those in shoots also decreased from 176.9% and 74.8% to 53.3% and 21.5%, respectively. Conversely, Burkholderia sp. Y4 inhibited Cd uptake by rice seedlings with different genotypes, including the low Cd-accumulation variety X24 and high Cd-accumulation variety T705. The root application of strain Y4 significantly reduced Cd accumulation in the shoots and roots of rice seedlings by 79.2% and 62.7% in T705 and by 57.3% and 24.1% in X24, respectively. The Cd2+ flux rate of high Cd-accumulation variety T705 was significantly higher than that of low Cd-accumulation variety X24. Under Burkholderia sp. Y4 inoculation, the yellow membrane was formed on the root surface of rice seedlings, and the Cd2+ flux rate in the elongation zone of T705 and X24 roots decreased by 36.0% and 35.0% in 3-day-old seedlings, as well as by 44.6% and 24.9% in 10-day-old seedlings, respectively. In conclusion, Burkholderia sp. Y4 inoculation inhibited the toxic effects of Cd on rice seedling growth through alleviating oxidative stress and damage caused by Cd. Furthermore, the root application of Burkholderia sp. Y4 effectively decreased the Cd2+ flux rate in the elongation zone of roots to inhibit the Cd uptake and accumulation in roots and shoots of rice seedlings. This study provides theoretical basis and data support for the application of Burkholderia sp. Y4 as a Cd-reducing and growth-promoting agent for rice in contaminated farmland.


Asunto(s)
Burkholderia , Oryza , Contaminantes del Suelo , Antioxidantes , Burkholderia/fisiología , Cadmio/análisis , Cadmio/toxicidad , Raíces de Plantas/química , Plantones , Contaminantes del Suelo/toxicidad
18.
Sensors (Basel) ; 22(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458933

RESUMEN

Eye movement biometrics can enable continuous verification for highly secure environments such as financial transactions and defense establishments, as well as a more personalized and tailored experience in gaze-based human-computer interactions. However, there are numerous challenges to recognizing people in real environments using eye movements, such as implicity and stimulus independence. In the instance of wayfinding, this research intends to investigate implicit and stimulus-independent eye movement biometrics in real-world situations. We collected 39 subjects' eye movement data from real-world wayfinding experiments and derived five sets of eye movement features (the basic statistical, pupillary response, fixation density, fixation semantic and saccade encoding features). We adopted a random forest and performed biometric recognition for both identification and verification scenarios. The best accuracy we obtained in the identification scenario was 78% (equal error rate, EER = 6.3%) with the 10-fold classification and 64% (EER = 12.1%) with the leave-one-route-out classification. The best accuracy we achieved in the verification scenario was 89% (EER = 9.1%). Additionally, we tested performance across the 5 feature sets and 20 time window sizes. The results showed that the verification accuracy was insensitive to the increase in the time window size. These findings are the first indication of the viability of performing implicit and stimulus-independent biometric recognition in real-world settings using wearable eye tracking.


Asunto(s)
Biometría , Movimientos Oculares , Tecnología de Seguimiento Ocular , Humanos , Reconocimiento en Psicología , Movimientos Sacádicos
19.
J Hazard Mater ; 426: 128130, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34959214

RESUMEN

When rice plants grown in paddy fields with Cd content of 0.3-1.5 mg kg-1, Cd quantities in roots and straws were 2-7 times higher than that in topsoil. Return of these vegetative organs to topsoil aggravated the ecological risk of Cd pollution. Cd content in rice grains was 0.1-1.3 mg kg-1, and hazard quotients for local consumers by intake of these rice were 0.7-8.8. Planting low-Cd-accumulating (LCA) cultivar reduced hazard quotients for consumers by intake of rice, but had similar ecological risks as high-accumulating (HCA) cultivars. LCA cultivar had lower Cd content in grains as well as higher efficiency of altering Cd into insoluble forms in flag leaves and upmost nodes than HCA cultivars. Insoluble Cd content in nodes was linearly increased with soil Cd content, companied by significant decline of 4 amino acids with dicarboxyl groups. Glu or Asp can form a cyclic complex with Cd by two O atoms from α-COO- and side chain-COO-. These results indicate that roots and straws have high potential to concentrate Cd by forming complexes between amino acids and Cd ions, and Cd-enriched straw return to topsoil may aggravate the ecological risk of Cd contamination.


Asunto(s)
Oryza , Contaminantes del Suelo , Aminoácidos , Cadmio/análisis , Cadmio/toxicidad , Salud Ambiental , Humanos , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis
20.
Bioresour Technol ; 345: 126387, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34838960

RESUMEN

To improve the quality of lignocellulose compost, the effect of a potential new-generation additive-amino acid-derived ionic liquid-on a compost pile comprising 50% rice straw was studied preliminarily. The addition of 1% 1-carboxymethanaminium chloride (glycine hydrochloride [Gly][Cl]) caused observably positive changes in the physical, chemical, and microbiological properties of the compost. After 30 days of composting, the humus and total nitrogen concentrations were 130.85 and 28.8 g/kg, showing an increase of 93.28% and 67.44%, respectively, compared with the concentrations in the beginning of composting; these concentrations were 76.97% and 41.69%, respectively, for the control group (without [Gly][Cl]). Thus, amino acid-derived ionic liquids can be promising additives for enhancing the quality of composts for which straw is used as the primary component.


Asunto(s)
Compostaje , Líquidos Iónicos , Oryza , Aminoácidos , Nitrógeno/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...